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THEORETICAL INVESTIGATION OF THE STRUCTURE AND VIBRATIONAL

FREQUENCIES OF WATER AND METHANOL COMPLEXES

By John Michael Craig
A Thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science in Chemistry at Virginia Commonwealth University.

Virginia Commonwealth University, May 2007

Major Directors: Donald D. Shillady
Carl O. Trindle, Professors of Chemistry

Water and methanol are common solvents used in liquid chromatographic
(LC) separations. It is highly desirable to model the interactions of these solvents in
order to better understand the nature of analyte solvation and its effect on retention.
Therefore, structure and frequencies of complexes of these solvent molecules have been
studied from a theoretical perspective as a first step in this direction. Specifically, cluster
structures have been optimized at the RHF and MP2 levels in various flexible basis sets

and with the counterpoise correction for basis set superposition error, and trends in the

X1



xii
structure and binding energies of several clusters are described. Good agreement was
obtained for the water dimer with the experimental value for the binding energy of D,O
using MP2 energies from 6-311G**/6-31+G** basis sets in conjunction with
counterpoise optimizations and full counterpoise corrections. In this investigation
harmonic frequencies have been calculated and corrected for the effects of anharmonicity
by several methods, two of which are original. The first new method fits a Morse
potential function to the energy computed along each normal mode. A second new
method is based on fitting a quartic polynomial to energies computed along each normal
mode. In cases where the quartic potential function is not very different from the
harmonic well, a second order perturbation formula provides a reasonable approximation
to the anharmonic vibrational frequencies. When the quartic potential is very far from the
harmonic potential, a variational treatment of the vibrations is required. We find that the
Morse method delivers reasonable estimates of frequencies of anharmonic motions at
lower cost than multi-point potential mapping/multiple geometry optimization/Taylor
series methods, and is more successful at predicting intermolecular frequencies than the
anharmonic VSCF methods found in GAMESS software. Variational calculations using
the quartic polynomials produce estimates of frequencies comparable to the more costly
VSCF method. Both the Morse method and polynomial method are very fast

computationally relative to these and other methods found in the literature.



CHAPTER 1. Overview and Objectives

The goal of the work reported here is the fast prediction of experimental
vibrational spectra with reasonable accuracy, using quantum mechanical computational
methods. These predicted spectra can give insight into the structure of liquids and into
the nature of solvation. This work is the basis for future investigations into analyte
solvation and liquid structure because analyte solubility is a thermodynamic property,
which can be calculated by statistical mechanics from molecular properties, including
vibrational frequencies. This work provides two fast methods that improve calculated
frequencies for this purpose. In the future, improved understanding of mobile phases
should give rise to improved prediction of LC retention characteristics, in particular, the
retention factor k.

In high-performance liquid chromatography, analytes interact with the mobile phase
components and the stationary phase according to attractive forces (hydrogen bonding,
van der Waals forces, etc.). They partition themselves among these components to
varying degrees -- affecting the retention time of the analyte. Understanding how a
solute is solvated should therefore lead to a better understanding of separations.

Ab initio optimized geometry calculations of solvent clusters can be used to study
solvent-solvent relationships. One of the most important solvent systems from a liquid

chromatographic point of view is that of methanol-water. In this work, dimers of pure
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water and pure methanol have been examined, as well as the 1:1 molecular complexes of
water and methanol. These clusters were chosen to represent some of the cluster
compositions suggested by experimental vibrational spectra, analyzed using multivariate
curve resolution methods [1]. The optimized structures of these clusters, their hydrogen-
bonding energies, hydrogen-bond lengths, angular relationships between atoms
participating in a hydrogen-bond, and the harmonic vibrational frequencies have been
calculated. Two unique methods for adjusting the harmonic frequency for anharmonicity
are presented in detail, calibrated for performance (using experimental data for the water
dimer), and compared to the unmodified harmonic frequencies for all clusters and to
other approaches from the literature. These improved gas-phase frequencies (and other
molecular properties) can later be used to generate bulk liquid-phase thermodynamic data
via statistical thermodynamic computations. With improved frequencies, better estimates
of bulk thermodynamic properties can then be used to make reliable predictions of
relative chromatographic retention times.

Low frequency vibrations and vibrations due to hydrogen bonding may be very
anharmonic in nature. The computed “static mode” potential of the water dimer,
describing the enegy as a function of the position of the bridging, hydrogen bonded
hydrogen atom between the two static oxygen atoms, is broad, shallow, and very
anharmonic for SCF and correlated SCF potentials (6-311G** and 6-311GL** basis sets,
respectively) [2]. Because the potentials of many normal modes vary significantly from
the harmonic potential model, it is important to correct for the effects of anharmonicity in
these solvent systems. A Morse potential describes the true potential for bond stretching

much better than a harmonic function [3]. The improved frequency predictions in this



work have been obtained by employing a distinct Morse or quartic polynomial potential
for each vibrational potential.

Many applications can benefit from improved theoretical calculations of vibrations.
Computed vibrational spectra can be used to assist in interpreting IR and Raman spectra
and as a tool to make assignments of experimental bands [4]. In ranges that are difficult
for experimental instruments to obtain frequencies, theory can provide good frequency
values in their absence. Also theoretical transitions can be employed to make spectral
predictions of new, possibly short-lived and complex, structures as well.

Calculated frequencies and intensities are important for the computation of
thermodynamic properties of gas-phase hydrogen bonded complexes. Usually the
molecules involved are sufficiently small that it becomes practical to employ the methods
of quantum mechanics. It is easier to model thermodynamic quantities of gas phase
species than to model solutions because the effects due to hydrogen bonding are not
obscured by other factors operating in solution.

Ab intio structure, energy, and frequency calculations are useful for a first-principles
determination of solvent effects on hydrogen bonding in the condensed phase. They also
shed light on the energetics of the hydrogen bonds themselves, from the values of
complexation energies, which are very difficult to derive from condensed phase
thermodynamic measurements. These values are important for obtaining state equations
for gases. Theoretical values of gas-phase energies and frequencies also allow direct
calculation of thermodynamic properties such as the enthalpy of association (directly
related to complex stability and the free energy of formation) and the entropy of

formation of the gas-phase hydrogen bonded complexes [5].



One method to arrive at thermodynamic properties of gas-phase complexation is to
measure and interpret relative vibrational intensities of free monomers and the dimer
complex and the temperature dependence of these intensities [S]. Thomas [6] handled
IR bands like charge-transfer bands, using the Benesi-Hildebrand approximation [7] to
obtain the equilibrium constant (via peak intensity) from the extinction coefficient. Pine
and Howard [8] employed absolute IR intensities to arrive at dissociation energies, using
statistical thermodynamic total partition functions of monomers and dimers, where the
input consists of rotational and vibrational parameters. With a similar approach, Legon et
al. [9, 10] found dissociation energies from intermolecular vibrational frequencies.
Experimental spectra are sometimes difficult to interpret owing to the overlapping of
broadened bands; theoretical calculations can give guidance for distinguishing the
position and intensity of spectral peaks. All of these approaches can benefit from
employing calculated spectra, and the more accurate the theory the better. Also, fast
theoretical treatments are of great value when the complexes of interest are large or when

many spectra must be calculated.



CHAPTER II. Anharmonicity Correction Approaches to

Vibrational Frequencies

Efforts have been made to improve computational vibrational spectroscopy beyond
the frequency predictions of the standard harmonic model. This is especially important
for chemical systems having very anharmonic frequencies such as those of hydrogen
bonded water and methanol complexes. Several correction approaches are outlined here:
simple scaling of harmonic frequencies [11, 12], is the least demanding, while attempts to
solve the vibrational Schroedinger equation require much more elaborate efforts. These
include treating a series expansion of the Hessian matrix by perturbation theory [13],
solving a self-consistent approximation to the vibrational problem (VSCF) [4, 14, 15],
treating coupling of the normal modes which are the basis of that method by perturbation

theory (cc-VSCF) [4, 14, 15] and variational treatments of the vibrational potential [16].

2.1 Scaling Factors for Harmonic Frequencies

Pople et al. [11, 12] created the first general scaling factors to adjust the harmonic
frequencies for systematic errors (relative to observed vibrational frequencies) due to
anharmonicity. These include the familiar 0.8929 factor for use for the HF/6-31G(d)
model chemistry and the 0.9427 factor for MP2/6-31G(d) calculations.

Scott and Radom [17] have developed sets of scaling factors for various model
chemistries. Their factors were developed using a set of 122 molecules including water
for a total of 1066 frequencies for the fundamental frequency scaling factors and 1062

frequencies for low frequency mode scaling factors. Scaling factors were calculated for



the individual molecules (which are not reported in that work) en route to developing the
general scaling factors for various levels of theory and basis sets. The optimum scaling
factor, A, for the fundamental frequencies is determined through a least-squares approach

where the residual (A) is minimized

all

A= Z(la)irheor _ a)iexpt)2 (21)

Xpt

and @™ is the i"™ harmonic frequency and """ is the i experimental frequency of the

1066 frequency set. This leads to the following expression for the optimized scaling

factor

all
Z altheor wexpt
A=t 2.2)

all

Z (a);heor )2

Root mean square errors relative to the entire frequency set are calculated for each

scaling factor according to

1
Mgy 2
j :Amin
I

Lo

rms,, =

(2.3)

where A, is the minimized residual for each mode. The fundamental scaling factors

derived from this approach are presented in Table 1 below for various levels of

conventional ab initio theory, with the root-mean-square error for each factor.



Table 1. Scaling Factors for Fundamental Harmonic Vibrational Modes [17].

Method Scale Factor | rms,, (cm")
HF / 3-21G ‘ 0.9085 87
HF / 6-31G(d) 0.8953 50
HF / 6-31+G(d) 0.8970 49
HF / 6-31G(d,p) 0.8992 53
HF / 6-311G(d,p) 0.9051 54
HF / 6-311G(df,p) 0.9054 56
MP2-fu / 6-31G(d) 0.9427 61
MP2-fc / 6-31G(d) 0.9434 63
MP2-fc / 6-31G(d.p) 0.9370 61
MP2-fc / 6-311G(d,p) 0.9496 60|
QCISD-fc / 6-31G(d) 0.9537 37

Fc means frozen core: excitations from cores are not included in the perturbation theory;
fu refers to calculations including such excitations.
The scaling factors for density functional methods ranged from 0.9558 to 0.9986 (rms,y
34 - 45 cm™). The authors [17] found that only 8 % of the frequencies derived from
using the MP2-fc / 6-311G(d,p) method were beyond their arbitrary target accuracy of
+10 % relative to experimental values.

Frequency corrections were also developed [17] to minimize the error of the low-
frequency, fundamental vibrations using an inverse scaling factor and a least-squares fit.
(The previous scaling factor was weighted to favor minimization of errors for high

frequencies). This time, the residuals are calculated according to

all 1 1 2
A= Z T (2.4)

1

for 1062 frequencies from the 122 molecule set.

The optimized low frequency scaling factor is found from



all 1 2
2\
A=m 2 2.5)

ol 1

i

Z afhoer afxpt
I i

The resulting optimized scaling factors for conventional ab initio theory are given in

Table 2 below.

Table 2. Scaling Factors for Low-frequency Harmonic Vibrational Modes [17].

rms,,
Method Scale Factor | (10° cm™)
HF /3-21G 1.0075 39
HF / 6-31G(d) 0.9061 15
HF / 6-31+G(d) 0.9131 15
HF / 6-31G(d,p) 0.9089 15
HF /6-311G(d,p) 0.9110 15
HF / 6-311G(df,p) 0.9085 15
MP2-fu / 6-31G(d) 1.0214 24
MP2-fc / 6-31G(d) 1.0485 29
MP2-fc / 6-31G(d.p) 1.0229 23
MP2-fc / 6-311G(d,p) 1.0127 23
QCISD-fc / 6-31G(d) 1.0147 20

In this work, the factors defined by Scott and Radom [17] are used to correct harmonic
frequencies which were previously calculated at the MP2/6-311G(d,p) level to evaluate
the effectiveness of their method. These are displayed in Table 3 below. The authors
[17] use a frozen core approximation in their MP2 calculations, while my harmonic
frequencies are obtained by full calculations. It is still possible to use Scott and Radom’s
scaling in this case because the difference in the root mean square errors (rms,,) was only

about 2 cm™ for full and frozen core calculations [17] in a similar basis set.



Throughout Chapter II (anharmonic frequency methods), the latest available experimental

data has been provided alongside the authors’ frequency results in each table.

Table 3. MP2/6-311G(d,p) Frequencies of the Water Dimer Using Scaling Factors.

Harm v
Mode (cm™? Scaled Harm v (cm'1) ®lExperiment (cm™) | % Dev vs Exp
Donor rotation about O-O 115 116 88 ° 31.8
143 145 103 ° 40.8
143 145 108 ° 34.5
0-O stretch 157 159 143 ¢ 10.9
306 310 311° 0.270
566 573 523 ° 9.59
Acceptor O-H bend 1673 1694 1599 °© 5.94
Donor O-H bend 1701 1723 1616 ° 6.62
Donor O-H sym stretch 3869 3674 3601 ' 2.02
Acceptor O-H sym stretch 3906 3709 3660 ' 1.34
Donor O-H asym stretch 3990 3789 3735 1.44
Acceptor O-H asym stretch 4010 3808 3745 ' 1.68

? Harmonic frequencies this work, Gaussian 03. ° Harmonic frequencies scaled using

Scott and Radom’s 1.0127 factor for low-frequency, fundamental vibrations and

intermolecular modes (lowest eight modes) and the 0.9496 factor for high-frequency,
fundamental vibrations (highest four modes). °Reference [18], planar supersonic
molecular beam expansion (terahertz laser vibration-rotation-tunneling spectroscopy), 5
K. 9 Reference [19], planar supersonic molecular beam expansion (terahertz laser
vibration-rotation-tunneling spectroscopy), 5 K. ¢ Reference [20], Neon matrix, 10 K. ©

Reference [21], molecular beam depletion spectroscopy with size selection by

momentum transfer in scattering experiment (atoms under single collision conditions).

The intramolecular frequencies for the water dimer as scaled by Scott and Radom are in

good agreement with the experimental data provided, especially for the high-frequency,

fundamentals. The scaling factors handle the intermolecular vibrations less well,

especially in the case of the lowest three vibrational modes. These three calculated

modes do not agree well with the experimental values probably because the harmonic

vibrational model is the basis for the scaling factors, and these modes are more akin to

relative rotations or torsions of the two water molecules rather than to vibrations.
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2.1.1 Experimental Frequencies

The frequencies for vibrational transitions in water dimer and related systems are not
very well established. It should be noted that experimentally determined frequencies
vary by the techniques and conditions used to obtain them, as can be seen from the range
of frequencies measured for each mode in Table 4. Matrix effects perturb experimental
frequencies, so molecular beam work is deemed more accurate. Though not an absolute
standard, experimental bands make a good benchmark for comparison with theoretical

spectral values.

Table 4. Experimental Frequencies of the Water Dimer (cm™)

Nitrogen | Argon

Mode Molecular Beam Neon Matrix Matrix | Matrix Range Description
1 88 ° 939 106 " 88-106 |PD torsion
2 1032 1159 128" 103-128 |[PA wag
3 108° 1239 108-123 |PA twist
4 143° 150 ¢ 143-150 |Intermolec str
5 3119 310" | 300" | 300-311 |In-plane bend
6 5239 514" 520" | 500" | 500-523 |Out-of-plane bend
7 1599 9 1601 ’* | 1593'™ |1593-1601|PA OH bend
8 1616 9 1619’ | 1612'™ |1612-1619|PD OH bend
9 3601 ° [3480° 3530 35919 3480-3601 [PD sym OH str
10 3660 ° 3600 3661 ¢ 3627 | 3634'" |3600-3661 |PA sym OH str
11 3735° 3730 37349 3699+ | 3709'" |3699-3735[PD asym OH str
12 3745° 3745 3750 ¢ 3715' | 3726 " |3715-3750|PA asym OH str

? Reference [18], planar supersonic molecular beam expansion (terahertz laser vibration-
rotation-tunneling spectroscopy), 5 K. ® Reference [19], planar supersonic molecular
beam expansion (terahertz laser vibration-rotation-tunneling spectroscopy), 5 K. °
Reference [21], molecular beam depletion spectroscopy with size selection by
momentum transfer in scattering experiment (atoms under single collision conditions). ¢
Reference [22], molecular beam electric resonance spectroscopy. ¢ Reference [23],
molecular beam, coherent anti-Stokes Raman spectroscopy. | Reference [24] high
resolution near-IR, molecular beam. & Reference [20], neon matrix, 4 K. " Reference
[20], neon matrix, 8 K. Reference [25], nitrogen matrix. J Descriptions ass1gned on the
basis of harmonic frequencies. * Reference [26], nitrogen matrix, 20 K. ! References [27,
28], nitrogen matrix. ™ [25], argon matrix. " References [27, 28], argon matrix.
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2.2 Taylor Expansions, Fourier Series, and Morse Potential

Muiioz-Caro and Nifio [29] studied the water monomer and dimer at the MP2/6-
311++G(2d,2p) level using a variety of methods for correcting frequencies for
anharmonic effects. They state that there is a fine line between translation and large
amplitude vibrations, and suggest that the low frequency intermolecular vibrations often
are in excited states at room temperature. Therefore, the kinetic elements of their
vibrational Hamiltonian include the effects of coupling between translation and large
amplitude vibrations.

The authors [29] separate the vibrational motions into normal modes, and define
potentials for each mode gk (each normal coordinate). The vibrational potentials are
usually represented by a Taylor series in qx. For some frequencies they take special
measures, employing a Morse potential, a Fourier series, or (for coupled modes) a double
Taylor series. They generate their mode potentials by calculating single-point energies

along normal mode coordinates 7, according to
r=r,+AW, (2.6)

where r, is the equilibrium position of the atoms, and AW, is the displacement along the

e

normal mode potential in the direction W,. AW, is an arbitrary factor, usually 0.1 and 0.2

so the depth of the well probed varies inconsistently from potential to potential and can
result in the probing of high-energy regions of the potential for one mode and only low-
energy regions of the potential for another mode. The problems with this type of probing

have been remedied by a novel technique presented later (this work). Once the potentials
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have been defined by their sets of single-point energies, Munoz-Caro and Nino [29]
solve their vibrational Hamiltonian variationally.

Below, in Table 5, are the theoretical frequency results for the water dimer as reported
by Mufioz-Caro and Nifio [29]. A detailed description of the methods employed for each

of the frequencies follows.

Table 5. Anharmonic Frequencies of the Water Dimer [29].

Anharmonic v
Mode (cm™)? Expt (cm™) [% Dev vs Exp
Donor rotation about O-O 105 88" 19.3
NA 103° NA
158 108" 46.3
O-0 stretch 153 143 ° 6.99
371 311¢ 19.3
639 523 ¢ 22.2
O-H bend 1654 1599 ¢ 3.44
O-H bend 1680 1616 ¢ 3.96
Donor O-H stretch 3548 3601 °© 1.47
Acceptor O-H stretch 3803 3660 ° 3.91
Donor O-H stretch 3905 3735° 4.55
Acceptor O-H stretch 3769 3745 ° 0.641

? Frequencies after various anharmonic corrections by Mufioz-Caro and Nifio [29]as
described in this text at MP2/6-311++G(2d,2p); NA indicates that no anharmonic
frequency was attempted. ®Reference [18], planar supersonic molecular beam expansion
(terahertz laser vibration-rotation-tunneling spectroscopy), 5 K. © Reference [19], planar
supersonic molecular beam expansion (terahertz laser vibration-rotation-tunneling
spectroscopy), 5 K. 4 Reference [20], Neon matrix, 10 K. © Reference [21], molecular
beam depletion spectroscopy with size selection by momentum transfer in scattering
experiment (atoms under single collision conditions). In order to match all frequencies,
assignments for modes without descriptions (not available from Mufioz-Caro and Nifio
[29]) are based on matching the order of their harmonic frequencies with those of Dunn,
et al. [30], as both authors used sufficiently large basis sets to make these assignments
good assumptions.

For the higher, fundamental frequencies [29], a Taylor expansion is fitted to the

single-point energies, and coupling between modes is not considered. The asymmetric
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O-H stretch of the water acceptor molecule is given special consideration. The Taylor
series was found to produce a frequency that was higher even than the harmonic
frequency, which is known to overestimate stretching fundamental frequencies. Mufioz-
Caro and Nifio [29] rationalize that the asymmetric vibration has an instantaneous
potential like a Morse potential while one O-H bond expands and the other O-H bond
contracts. However, for the second half of the vibration where the first O-H bond
contracts and the second expands, the potential would need to be reversed for this
situation. This translates into a positive quartic correction in the Taylor expansion
relative to the harmonic potential and, thus a higher frequency. They solved the problem
by simple scaling, reducing the compression motions of both O-H bonds by 4 % and
obtained better agreement with experimental results. All water O-H stretches not
involved in H-bonding were treated in this manner.

The donor O-H symmetric stretch which is influenced by the H-bonding was treated
by mapping a relaxed scan along the O-H bond length [29]. The hydrogen was moved
incrementally in steps of 0.2 A, and the energy at each point was optimized with respect
to the remaining coordinates. These energy points were then used to generate a Taylor
series as before, resulting in a polynomial with quartic terms in the displacement. As can
be seen from Table 5, this method generated a frequency about 1.5 % lower than that of
the quoted experimental value for this mode.

The intermolecular vibrational mode that is mainly the rotation of the donor water
molecule about the O-O axis [29] was handled by changing the geometry configuration
of the dimer by rotating the donor water molecule in steps of 30° about the O-O axis. The

energy was optimized with respect to other degrees of freedom for each angle effectively
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mapping the rotational potential. A Fourier expansion was fit to the grid as a function of
torsional angle. The vibrational energy levels were then calculated variationally in the
free-rotor basis.

The O-O intermolecular stretching mode is also handled [29] with a special procedure.
Nine single-point energies are calculated along the O-O distance in addition to the energy
at the equilibrium geometry. The O-O distance is adjusted in increments of 0.2 A, and
the geometry is fully optimized at each step (fixed O-O distance). Most of these points
describe the dissociative portion of the vibration beyond the equilibrium length (about 2.9
A), including one point beyond the systematic stepping at about 4.4 A. The remaining
points arise from compression of the O-O distance. The resulting energies are then used
to construct a Morse potential to describe this mode. The O-O stretching frequency
generated is in good agreement with the listed experimental frequency (about 7 % higher
than and within 10 cm™ of the experimental value).

Mufioz-Caro and Nifio [29] also investigated the technique of 2-dimensional potential
grid mapping as a means of accounting for the coupling between vibrational modes.

They studied the coupling of the donor O-H stretch with the O-O stretch using a surface
grid of 12 points and re-optimized the geometry of the remaining coordinates not
involved in these motions for every point. A double Taylor series in the two normal
modes q 0.0 and q o-n Was then fitted to those points, and the resulting 2-dimensional
oscillator potential with coupling terms was solved variationally. The resulting
frequencies for the donor O-H stretch and the O-O stretch were 3321 cm™ and 176 cm™,

respectively, as seen in Table 6 below.
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Table 6. Donor O-H stretch and O-O stretch using One-Dimensional and Two-

Dimensional Grid-Mapping [29].
Anharmonic v % Dev vs
Mode (cm™ Expt (cm-1) Exp
One-Dimensional Models|
0-0 stretch 153 ° 143 ° 6.99
Donor O-H stretch 3548 ° 3601 ° 1.47
Two-Dim. Coupled Model
0-0 stretch 176 143 ° 23.1
Donor O-H stretch 3321 3601 ° 7.78

# 10-point potential mapping at MP2/6-311++G(2d,2p) with fit of Morse potential. ® Five-
point mapping at MP2/6-311++G(2d,2p) with fit of Taylor series polynomial. ‘Reference
[19], planar supersonic molecular beam expansion (terahertz laser vibration-rotation-
tunneling spectroscopy), 5 K. 4 Reference [21], molecular beam depletion spectroscopy
with size selection by momentum transfer in scattering experiment (atoms under single
collision conditions).
Given that the independent mode models used initially in this study [29] yield more
reliable results than the coupled model, it seems that a two-dimensional grid potential is
not the best approach for describing the coupling between these two stretching modes of
the water dimer.

With this assortment of techniques and approaches for handling the frequencies of the
water dimer, Mufioz-Caro and Nifio [29] arrive at frequencies that are significantly higher
than those found experimentally for the low frequency intermolecular vibrations.

However, their methods result in good agreement with experimental values for the

intramolecular modes, producing generally only slight overestimates in these frequencies.

2.3 Vibrational Self-Consistent Field (VSCF) Approximation
Chaban, Jung, and Gerber [14, 15, 31] present a method that uses input from ab
initio electronic structure calculations to directly calculate corrected frequencies for all

vibrational modes and includes the effects due to pair-wise mode coupling of each mode
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with all of the others, treating the very anharmonic water monomer and dimer. Like
Mufioz-Caro and Nifio, they make the assumption that the total vibrational wave function,

¥, , of all modes Q,is given by the product of the vibrational wave functions in the state

(n) of each individual mode as follows
2 (Q,Qy) Hw”’(Q) .7

The self-consistent field equation for one mode is given by

-1 az n n n n
[7 Q@ +VI"(Q, )] " = gy (2.8)
where the harmonic potential of the Hamiltonian is replaced by

W(Q,)=<1”[w,‘"’(o,)‘V(o1,---,oN>

I#j

[Tv"(Q )> 2.9)

Y]
This is a “mean field” or self- consistent approximation analogous to the Hartree-Fock
method for electronic motions. Equations (2.7) and (2.8) must be solved iteratively until
self-consistency is reached, resulting in the calculations of the single-mode energies,
wave functions, and potentials.

The total vibrational energy in the VSCF approximation is represented by

CTRREY)

N N
E,=Y "~ (N- 1)X<HV’/
j=1 j=1

(.”)(Ql. )> (2.10)

It is possible to go beyond the mean-field approximation. The potential operator from

equation (2.10) can be written

vV(Q,...Qy) ZV(Q)+ZZ (Q,Q)) (2.11)

i i<j
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where the single mode potential V,(Q;) is perturbed by the pair-wise interaction of mode

j with all other modes i. The coupling integrals have the form

veer ()

W(Q)|v,(Q.Q)w(Q)) (2.12)
where the pair-wise interaction potential from (2.11) is the operator. Both terms in the
potential are recovered from a grid of energy values. The VSCF method is generally used
in conjunction with ab intio potential surfaces. A number N ranging from 8 to 32 single-
point energies are calculated for mode j, and if coupling is to be described a two-
dimensional grid of points for displacements along modes i and j is generated [14]. This

results in a N x N potential grid representation of V,(Q;,Q;), the interaction between the

two modes. It was found that a 16 x 16 point grid (256 points) was sufficient to describe

two-mode coupling in the water monomer and dimer [15].

2.4 Correlation Corrected VSCF (CC-VSCF)
A more advanced form of VSCF [14, 15, 31] involves the correction of the VSCF

vibrational energy to second order using the expression below

2

<l”[vf5-"’<o,->

N
' av ,1'/f§"”(0,»>>
cc2 VSCF I= /=
E*? =E +;Z O E® (2.13)

where E,fcz is the final cc-VSCF energy (correlation-corrected VSCF vibrational energy).

The correlation effects are defined by the quantity

N
AV(Q,....Qy) =V(Q,....Q,) - D V(Q)) (2.14)
j=1
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It is possible to treat only a subset of frequencies if desired for either VSCF or cc-VSCF.
The VSCF and cc-VSCF methods are available in the GAMESS software package, and
the authors [15] estimate that chemical systems as large as 15 atoms can be fully treated.

In Table 7, the frequency results from the VSCF and CC-VSCF methods [31] are
shown for the water dimer, where all potential surface calculations were done at the
MP2/TZP level. The harmonic frequencies overestimate the fundamental stretching
frequencies, while the VSCF and CC-VSCF methods do correct the high frequency,
intramolecular modes to the red and are in very good agreement with experimental
values. The VSCF model slightly underestimates the frequencies of bending modes,
while the CC-VSCF method slightly underestimates the intramolecular frequencies in
general. However, for the low frequency, intermolecular modes, the VSCF and CC-
VSCEF frequencies are not very consistent with one another or with the harmonic

frequencies and are much larger than the harmonic frequencies.
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Table 7. Anharmonic Frequencies of the Water Dimer by VSCF and cc-VSCF

r Harm VSCF | CC-VSCF | Expt |% Devvs Exp|% Dev vs Exp

Mode| (cm™) | (em”) | (ecm™) | (cm™) VSCF CC-VSCF Description
1 142 545 419
2 161 414 309
3 179 259 147 143° 81 2.8 O-0O str
4 191 451 409
5 366 550 521
6 674 769 732
7 1618 1565 1564 1599 ° 2.13 219 acceptor bend
8 1646 1612 1605 1616 " 0.248 0.681 donor bend
9 3799 3560 3565 3601 ° 1.14 1.000 donor sym str
10 3874 3689 3647 3660 ° 0.792 0.355 acceptor sym str
11 3982 3733 3745 3735° 0.0535 0.268 donor asym str
12 4005 3763 3724 3745 ° 0.481 0.561 acceptor asym str

? Reference [19], planar supersonic molecular beam expansion (terahertz laser vibration-
rotation-tunneling spectroscopy), 5 K. ® Reference [20], Neon matrix, 10 K. © Reference
[21], molecular beam depletion spectroscopy with size selection by momentum transfer
in scattering experiment (atoms under single collision conditions).

Table 8 provides a closer look at the low frequency vibrations. Each mode and the

harmonic, VSCF, and CC-VSCF frequencies correspond to one another, according to the

assignments of Chaban, et al. [31].

Table 8. Overall Comparison with Available Experimental Low Frequency

Vibrations for the Water Dimer [4].

Harm VSCF CC-VSCF Expt

Mode (cm™ ~ (cm™) (cm™ (cm™)
1 142 545 419 88°

2 161 414 309 103 °

3 179 259 147 108 ®

4 191 451 409 143°

5 366 550 521 3M°

6 674 769 732 523°

® Reference [18], planar supersonic molecular beam expansion (terahertz laser vibration-
rotation-tunneling spectroscopy), 5 K. ® Reference [19], planar supersonic molecular
beam expansion (terahertz laser vibration-rotation-tunneling spectroscopy), 5 K.

¢ Reference [20], Neon matrix, 10 K.
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Due to the sparse mode descriptions provided by the authors [31] for the low modes, it is
difficult to assign experimental frequencies (including newer observed values that have
now become available) on a mode per mode basis, so these experimental values are listed
in ascending order to provide a means of comparison with the theoretical intermolecular
frequencies as a whole.

As can be seen, the VSCF frequencies are in the 400 cm™ and 500 cm™' range, or
more, for five of the six modes, greatly overestimating the experimental frequencies of
the low mode vibrations where five of the six frequencies are found between 88 cm™ and
311 cm™. The CC-VSCF low frequencies are a modest improvement over the VSCF
predictions, but these also, as a whole, overestimate the experimental results by a large
margin. The harmonic frequencies, however, do provide a more reasonable agreement
with the experimental values as a group.

Chaban et al. [31] also investigated the frequencies of both the water-methanol
configuration (where water donates the proton in the hydrogen bond) and the methanol-
water configuration (where methanol donates the proton) of the water/methanol mixed
dimer. As before, all potential surface calculations were done at the MP2/TZP level. In
Table 9 for the water-donor complex, where experimental data is available, the VSCF
and CC-VSCF frequencies agree very well with the experimental values of the
fundamental frequencies. However, the VSCF and CC-VSCF methods generally blue-
shift frequencies to a large extent relative to the harmonic frequencies for the
intermolecular vibrations. This suggests that they may be largely overestimating

physically measurable frequencies as was the case for the water dimer.
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The red-shifting of the bonded water OH-stretch in this mixed complex relative to that

in the water dimer gives evidence (both from the VSCF and CC-VSCF calculations, as

well as from the experimental data) that the hydrogen bonding is stronger in the water-

methanol conformer of the mixed dimer than in the water dimer.

Table 9. Anharmonic Frequencies of the Water(donor)-Methanol Dimer [4].

Harm VSCF | CC-VSCF | Expt® |% Dev vs Exp | % Dev vs Exp
Mode| (cm”) | (em™) | (em™) | (ecm™) VSCF CC-VSCF Description
1 55 252 174
2 75 279 142
3 130 578 575
4 200 195 172 0-O str
5 306 579 546
6 402 623 592
7 678 827 799
8 1065 1039 1037 1032 0.678 0.484 CO str
9 1098 1104 1093 1078 2.41 1.39 Methanol bend
10 | 1210 1203 1201 IMethanol bend
11 1390 1371 1366 Methanol bend
12 1532 1503 1500 1466 2.52 2.32 CH; bend
13 1540 1531 1532 CH, bend
14 1552 1539 1539 CH; bend
15 1641 1593 1582 1614 1.30 1.98 H,O bend
16 3093 2955 2907 2974 0.639 2.25 CHi str
17 3172 2975 2935 3018 1.42 2.75 CH, str
18 3229 3050 3026 CH; str
19 3760 3530 3501 3539 0.254 1.07 H.O str (bonded OH)
20 3911 3683 3713 3663 0.546 1.37 Methanol OH str
21 3975 3742 3792 3704 1.03 2.38 H.O str (free OH)

? Reference [32], Argon matrix, 12 K.

In Table 10 the frequencies for the methanol-donor configuration of the

water/methanol dimer are given. Good agreement with the experimental frequencies was

obtained with both the VSCF method and the CC-VSCF for the fundamental vibrational

modes. For the intermolecular modes, the VSCF method still exhibits some
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inconsistency with the harmonic frequencies. In all cases, the VSCF and CC-VSCF

methods produce frequencies that are higher (and usually much higher) than the harmonic

values for each mode.

Table 10. Anharmonic Frequencies of the Methanol(donor)-Water Mixed Dimer

Harm VSCF | CC-VSCF | Expt® |% Dev vs Exp | % Dev vs Exp
Mode| (cm™) | (em™) | (em™) | (em™) VSCF CC-VSCF Description
1 75 215 192
2 81 350 102
3 99 413 270
4 188 309 284
5 209 496 432
6 252 652 614
7 721 851 827
8 1094 1067 1064 1048 1.81 1.53 CO str
9 1141 1135 1128 1103 2.90 2.27 OCH bend
10 1209 1192 1189 OCH bend
11 1456 1428 1420 1380 3.48 2.90 COH bend
12 1531 1497 1495 1448 3.38 3.25 CH; bend
13 1536 1515 1516 1464 3.48 3.55 CHj bend
14 1555 1524 1523 1475 3.32 3.25 CHj bend
15 1619 1617 1625 1601 0.999 1.50 H,O bend
16 3061 2930 2891 2835 3.35 1.98 CHj str
17 3123 2934 2904 CHg str
18 3194 3020 3007 2982 1.27 0.838 CHg str
19 3812 3572 3595 3536 1.02 1.67 Methanol OH str
20 3874 3689 3645 3627 1.71 0.496 H,O sym str
21 4005 3705 3661 3714 0.242 1.43 H,O asym str

? Reference [33], Nitrogen Matrix, 10 K.

The authors [31] remark that their VSCF and CC-VSCF methods will predict the

intermolecular vibrational frequencies of hydrogen bonded systems with less accuracy

than for the fundamental frequencies and that the greatest inaccuracy would be found for

low frequency modes involving large nuclear motions.
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2.5 Taylor Series Transformation into Morse and Gauss Potentials

Taylor series force fields do not predict strong anharmonicity features when they are
present in the potentials of large displacement vibrations [16]. Because Taylor
expansions do not always describe vibrational potentials very well, especially in the case
of stretching modes involving hydrogen atoms [34], Burcl, Carter, and Handy [16]
transformed a quartic, Taylor series polynomial potential to expansions in Morse
coordinates or in Gauss coordinates and tested the resulting potentials on water,
formaldehyde, and methane molecules.

The initial quartic, polynomial force fields are calculated using density functional
theory. The single mode (uncoupled) Taylor polynomial used for symmetric vibrations is

1 1 1
V(Q,)= ’z‘wfof + —é'FkkaI? +2_4Fkkka: (2.15)

where Q, are the normal coordinates, @), is the harmonic frequency, and F,,, and F,,,, are

the cubic and quartic force constants, respectively. The authors [16] assume that these

vibrations can be associated with the Morse potential

V(Q,)=D,(1-e %%y (2.16)
where D, is the dissociation energy. The parameter & , which governs the width of the
potential, can be found by setting equations (2.15) and (2.16) equal to each other and then

-, Q

expanding e . Then the mass-weighted normal coordinates Q, of the force fields for
these symmetric vibrations are substituted by Morse-like coordinates of the form
— -0 Qy
y,=1-e (2.17)

Burcl, et al. [16] propose that the asymmetric vibrations, which they describe with the

polynomial
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1 1
V(Q)= Ea)llef + ﬂFkkka: (2.18)

may be associated with some degree of dissociation and therefore can be modeled by a

Gauss potential
V(Q,)=D,(1-e74%) (2.19)

By equating (2.18) and (2.19) S, is found to be

S

B = (2.20)

2

O

e

An initial guess for D, in equation (2.20) is guided by the dissociation energies for the
symmetric modes and a rough estimate of f, is obtained which can be fine tuned.

Now the Q, for asymmetric vibrations are substituted by Gauss-like coordinates

1

z, = (1 _ehd )E 2.21)

After the normal coordinate substitutions for all vibrations, the Taylor series force
constants remain unchanged for the quartic polynomial.

Finally, the frequencies are found variationally by a vibrational SCF calculation
followed by configuration interaction (CI). These calculations are done in conjunction
with a maximum of four potential grids, so up to four vibrational modes may be coupled.
The method is designed for use on small, polyatomic molecules, and is computationally
expensive.

In the case of the water monomer frequencies shown in Table 11 below, Morse-like

and Gauss-like potentials used in place of Taylor series polynomials in variational/CI
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vibrational calculations with multi-dimensional grid mapping provided improved

frequency prediction.

Table 11. Water Monomer Vibrational Frequencies [16].

MM-T? [MM-MG"| Expt° [% Dev vs Exp| % Dev vs Exp
Mode (ecm™) | (em™) (cm™) (MM-T) (MM-MG)
IAsym OH str| 3810 3765 3756 1.44 0.240
Sym OHstr | 3712 3666 3652 1.64 0.383
OH bend 1586 1592 1595 0.564 0.188

# MM-T is the authors’ [16] computer program “MULTIMODE” used to execute the
calculations as described in this section above. T indicates that Taylor expansion
potentials were used. ° MM-MG indicates the use of MULTIMODE where the normal
coordinates have been replaced by Morse-like coordinates for the symmetric vibrations
and by Gauss-like coordinates for the asymmetric modes. © Reference [31]

2.6 Perturbation Theory with Multi-Dimensional Potential Surfaces

In order to account for anharmonic vibrational effects and improve anharmonic
frequencies, Barone [13, 20] has developed a perturbative evaluation of vibro-rotational
parameters which makes use of an anharmonic, force constant building technique.
Vibrational levels are computed from multidimensional potential surfaces in conjunction
with second-order perturbation theory and takes into account vibrational resonances. The

effects of which are incorporated into the anharmonicity coefficients, ¥, , as found in the

vibrational energy levels

(2.22)

1 1 1
G(n)= Zw,-[”f +'2'J+ZZU(”,- +'2'J[”; +§j

i<j
All values for y; are calculated from the frequencies (vand 2v transitions). Barone’s

approach is available in the latest version of Gaussian.
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In Table 12 below, it can be seen that Barone’s [13] method is not quite as accurate as
that of Burcl et al. [16] for the stretching frequencies of the water monomer. Both
methods, however, arrive at about the same excellent estimation for the OH bend.
Barone’s treatment still yields very good agreement with observed values for all three

frequencies.

Table 12. Water Monomer Frequencies as Calculated by Bouteiller and Perchard
[20]

Calculated Expt
Mode (cm™)?® (cm™)® [% Dev vs Exp
IAsym OH str 3794 3756 1.01
Sym OH str 3674 3652 0.602
OH bend 1598 1595 0.188

? Theoretical method of Barone [13] as found in Gaussian03 at MP2 level using
D95++(2d,2p) basis set. ® Reference [31].

Testing Barone’s approach on the water dimer, Bouteiller and Perchard [20] arrived at
the frequencies shown in Table 13. The upper six intramolecular modes and the out-of-
plane bend are very well reproduced, and the in-plane bend and intermolecular stretch
agree fairly well with observed values. The frequencies of the lowest three
intermolecular modes agree within 20 % of their experimental counterparts, which is an
improvement over the estimations of many methods, including the ones already discussed

in detail in this text.
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Table 13. Water Dimer Frequencies as Calculated by Bouteiller and Perchard [20]

Calculated Expt
Mode (cm™)® (cm™)  |% Dev vs Exp
PD torsion 78 88° 11.4
PA wag 122 103° 18.4
PA twist 120 108 ° 11.1
Intermolec str 150 143 ° 4.90
In-plane bend 323 311° 3.86
Out-of-plane bend 525 523 ° 0.382
PA OH bend 1608 1599 ¢ 0.563
PD OH bend 1618 1616 ¢ 0.124
PD sym OH str 3599 3601 ° 0.056
PA sym OH str 3666 3660 ° 0.164
PD asym OH str 3772 3735° 0.991
PA asym OH str 3779 3745 ° 0.908

? Theoretical method of Barone [13] as found in Gaussian03 at MP2 level using
D95++(2d,2p) basis set. °Reference [18], planar supersonic molecular beam expansion
(terahertz laser vibration-rotation-tunneling spectroscopy), 5 K. © Reference [19], planar
supersonic molecular beam expansion (terahertz laser vibration-rotation-tunneling
spectroscopy), 5 K. 4 Reference [20], Neon matrix, 10 K. © Reference [21], molecular
beam depletion spectroscopy with size selection by momentum transfer in scattering
experiment (atoms under single collision conditions).



CHAPTER II1. Morse Method for Correcting Frequencies for

Anharmonicity

3.1 Theory

Vibrational spectra of solvent complexes bound by hydrogen bonding and weak van
der Waals forces can be described poorly by the harmonic oscillator model. Figure 1
gives an idea of what the potential well looks like for a hydrogen atom moving between
two oxygen atoms in an uncharged hydrogen bonded water dimer. Note that these are

static potentials where the O atoms are held fixed.
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Figure 1. Static Mode Potential Simulating the Hydrogen-Bond Vibration of the Water
Dimer [2].
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Chaban and co-workers’ VSCF method [15] to calculate frequencies corrected for
anharmonicity uses /6 points along the potential for each vibration in addition to the
equilibrium energy (the minimized structural energy). The results for intramolecular
modes in weakly bound clusters are quite good, without the use of scaling factors.
However, this method requires enormous amounts of computational time, and may not be
suitable for strongly coupled intermolecular motions.

Here we present a method that requires only 3 points along the potential for each
vibrational mode, which is to say, only two single-point energy calculations plus the
global minimum (equilibrium energy). Our method provides a tool that not only gives
accurate frequencies, but does so relatively quickly. A method with these characteristics
is greatly desired for research projects that demand a large quantity of good, theoretical
frequency data, for large cluster systems, as well as for projects that require reasonable
calculation times coupled with sufficient accuracy.

Three different potential energy curves are discussed in this section. First is the
harmonic potential (Figure 2), parabolic in shape and symmetric about the point r, with r
as its minimum, which is the model that is used to compute harmonic frequencies. The
advantage of a perfectly harmonic potential is that it can be exactly separated. The

energies of the normal modes Qj are each a solution of a one-dimensional problem.

1 J’E
V=—
2Z[axiax,]

1
xx; == 2 KO 3.1)

i
0
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Morse Potential

Internuclear Distance

Figure 2. Potential Curves. In this figure, the dashed curve is the harmonic potential
while the solid curve is the Morse model potential. V is the internuclear potential energy,
r is the instantaneous internuclear distance, and r. is the equilibrium internuclear distance.

The second curve we shall discuss is the potential that could be constructed if one
calculated the MP2 single point energies for a large number of displacements of the
atoms. This would provide the exact shape of the MP2 vibrational potential. However, it
is not practical to generate even one of these potentials as you would need many energy
points along the curve to map it out. Even this curve is an approximation of the true
potential because it originates from the MP2 method, which itself makes an
approximation to the exact energy.

The third potential curve is a Morse potential and has the shape of the solid curve in
Figure 3. Because a Morse potential more accurately describes the true potential
(especially for weak intermolecular interactions and hydrogen-bonding) than does the

harmonic parabola and has an exact solution, this is the curve that we will use to simulate
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the true potential. To do this, we will assume that the bottom of the Morse well maps
directly onto the bottom of the harmonic and true potential wells, and that the energy at r.

is the same on all curves.
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Figure 3. Anharmonic Potential Well. Taken from reference [35].

The Morse curve is of the general form

V=D, (1 — e“"("’e))2 (3.2)

where D, is the depth of the potential (relative to the energy of the separated atoms), i.e.,

the dissociation energy. Here again, r is any internuclear distance on the potential, r. is
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the point on the curve with the lowest energy (at the equilibrium, internuclear distance),
and V is the corresponding energy of r. The energy levels of the Morse potential are not

spaced equally and are given by

2
E\ e = hc@, (n + %) —hcX o, (n + %) (3.3)

where X, is the anharmonicity constant. Unfortunately, the Morse potential for

molecules with more than one vibrational mode is not separable; there is no direct
analogy to the separate normal modes of the harmonic oscillator and the energies
associated with each mode. The Morse potential (and its energy levels) is not solvable
for the polyatomic case. Therefore, an indirect means must be found to solve it.

The well-known wave functions and energies of the harmonic oscillator can serve as
a starting point for a perturbation treatment of the Morse oscillator. The energy levels of

the harmonic oscillator are given by the following equation
1
E, .. =hv, (n + —2-) (3.4)

where h is Planck’s constant, v, is the harmonic frequency, and n is the selected energy
level of interest.

According to Pauling and Wilson [3], the energy levels of the harmonic oscillator can
be perturbed and constrained to fit a new set of energy levels defined by another energy
level model (in our case, that of the Morse potential) using first order perturbation theory.

The perturbed energy levels of the harmonic oscillator are:

2
E,. =hv0[n+%]+[643 4)(2n2+2n+1)(h2—b2J (3.5)

v/ m'v,
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(where b is the perturbation parameter and m is the reduced mass) which can then be set
equal to the formula for the energy levels of a Morse potential [36] (equation (3.6)

below):

2
E v torse = hc@, [n +%] —hcX 0, [n +%) (3.6)

where c is the speed of light and

o, =2 |2 (3.7)
zc N 2m
and
X, =" o (3.8)
4D,

a is a parameter that governs the width of the Morse potential. D, represents the
spectroscopic dissociation energy. With Eye and Emorse set equal to each other, the
energy levels of a quartic approximation to the Morse potential can be solved for each
normal mode in terms of the harmonic energy levels. In order to accurately solve for
these energy levels, we reexamined the work of Zhang [37] and proceed with the
following modified derivation.

After setting equation (3.5) and equation (3.6) (Eperr and Emorse respectively) equal to

each other, and after manipulation we solve for b as follows

1 3 2 h’b 1 1Y
hy| n+= |+ == |(2n* +2n+1)| = |=hcw,| n+= |- hcX,0,| n+—| (3.9)
2) \64x m’v; 2 2

We isolate the factor that contains b
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2
Wb hcw, (n +%)—thea)e (n+l] —hv, (n +l)
[ J: 2 2 (3.10)

2,,2
Yo 5202 +2n+1)
64r

Simplifying the denominators and isolating perturbation parameter b gives

2
64m’v.r’ {hca)e (n + %) —hcX o, (n + %) - hv, [n + %ﬂ

b= 3.11
() (2 + 20 1) G1D
and may be further simplified to
2.,3.4 l 1
64m Voﬂ' [n + Ej |:_Xe [)’l + Ejjl
b= > (3.12)
3h(2n% +2n+1)
Furthermore,
L1 ? L1 ?
nry 64m*vir* nry (4n2 +4n+ l) F
b=———5 X.=—7—5 F=-f—7F——+— (3.13)
(2n° +2n+1) 3k (20 +2n+1) (2n* +2n+1) 4
, 64m’v.rt .
where is F represents e %, - Inother words b depends on n. The vast majority of

vibrational transitions which occur during infrared spectroscopy are from the n=0 to n=1
quantum states, so we must compute the perturbed energy levels for both the n=0 and the

n=1 levels. For n=0, b = -F/4, and for n=1, b = -9F/20, taking note that Cw, is equal tov,,,
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the harmonic frequency in Hz. From here a numerical calculation is carried out to find a
value for b (which is in units of kg’s™J™") by substituting in the various values for the
variables that define b for each n. Now with the value of b in hand, it can be substituted
into the equation for E,. (equation (3.5)), and because all other quantities are known, the
perturbed energy of the harmonic oscillator at the desired energy level (n=0 or n=1) may
now be calculated. This is the approximation to that energy level in a Morse potential.

We now arrive at the anharmonically corrected frequency, v, (equation (3.14)),

based on the Morse curve in terms of the solvable harmonic treatment (for vibrational

transitions from n=0 to n=1).

(3.14)

3.2 Derivation of D, and variable a

In order to represent the D. formulation accurately, we reexamined the work of
Zhang [37] and derive a new expression as follows.

Recall, the Morse potential is defined by the expression
V(x)=D,(1-e*) (3.15)

where x =r—r,. Taking the first derivative of the potential function, we have

dV(x) _ _
—2=2D (1—-e*)ae™ 3.16
dx e( ) (3.16)
The second derivative follows
sz(x) 2/ —ax\2 _ 5 -
=2Da’(e®™) —-2D (1-e“)a’e™ 3.17
dx2 4 ( ) e( ) ( )
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The force constant for the Morse curve can be calculated at the equilibrium position using

the second derivative, by setting x (the step size, r-re) equal to zero. This results in
k=2D,a’ (3.18)

for the Morse potential. The step size along the harmonic potential, x, originates from

V=i (3.19)
2
where
2V
x=,— 3.20
p (3.20)
And at the n=0 energy level,
hv
xX=,]— 3.21
P (3.21)

Interestingly, the difference in energy at the points +x and -x depends only upon D, and
so does not depend on the Morse parameter “a”.
The cubic term for the Morse potential can be found by taking the third derivative of

the Morse potential function

d 3;/(3") ——6D,a* () +2D,(1-e™)a’e™ (3.22)
X

and evaluating at x = 0. This gives the cubic term the value -6Dea3 .

The difference in energy at the turning points is given by (notice that a will cancel):

2
AE=-2Da'| Y (3.23)
2D,a

or
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)’
2D

e

L

(3.24)

As AE approaches zero, D, increases. This makes sense because the potential is
approaching that of a pure harmonic oscillator, for which no dissociation energy is
defined. The harmonic frequency, v, is known, leaving the value for D, as the only

unknown. Solving for D, the dissociation energy, we find

(3.25)

Having obtained this estimate for D,, it is now possible to evaluate the a parameter of

the Morse curve.
As before, k= 2Dea2 for the Morse curve, and for the harmonic oscillator, k = ,ua)2 .

Because the force constant for the Morse potential has the same meaning as the force
constant of the harmonic potential at the equilibrium position (1), we may set the two

equal to each other to find a:

uw’ =2D,a° (3.26)
Solving for a, we have
a= ‘2‘;‘)’2 (3.27)

e

Now all parameters are known, and first-order perturbation theory can be used to

calculate the energy for a given normal mode.
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3.3 Determination of Displacement x

We use a method which provides a non-subjective way to determine + x that is based
on the selected energy value down in the harmonic well of the given vibration and as
such is self-adjusting to the depth of each potential (see below).

The displacement + x, about re_ is based on the potential of the harmonic oscillator.

From Hooke’s Law, the energy of the classical (and quantum mechanical) oscillator is

given by
1, ,
V= Ekx (3.28)
Therefore,
1
x= i_(27Vj2 (3.29)

where k is the harmonic force constant and V is the selected energy level in the well. To
determine x, the n=0 energy level in the well was chosen for this study. A large value for
V can describe the asymmetry of the vibration more accurately, however, this may also
be at the expense of an accurate description for the bottom of the well. Furthermore, at
higher energy values, some molecules (especially hydrogen-bonded complexes) will
dissociate. The n=0 energy level was found to be a suitable choice for the hydrogen-
bonded systems in this work.

The equilibrium coordinates of the atoms are moved by this fractional displacement
Ax along the normal coordinate (i.e., by Ax times the normalized, normal mode

displacements). Because the displacements are adjusted by the naturally occurring
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fluctuations in depth and width of the harmonic potential from mode to mode, this
renders the choice of x objective and self-adjusting (to the depth). Finally, single-point

energies at the new geometries are calculated to obtain energies V+ (at +Ax ) and V- (at

-Ax ) along the MP2 coordinate.

o- —
- Morse Potential
\Y
B \ A | — tx
_Harmonic‘-\ f
Potential 1 v,

Internuclear Distance

Figure 4. Potential Curves demonstrating the x step and corresponding V. and V. single
point energies. The n=0 level intersects the harmonic potential at + x. This allows a
novel approach for determining an objective and self-adjusting Ax for each and every
vibration that results in a good fit of the true potential by the Morse curve. Also, using

Ax in this fashion will lead to single point energies V. that automatically fit an
asymmetric potential.

With Ax for each mode in hand, we are now able to calculate the single-point energies,
V., along the potential. The values V. in turn allow for the solving of D, and, D, in

turn, is used to obtain the Morse parameter a, which is the range of the Morse curve and

is in units of cm™ as discussed above. Finally, the frequency is corrected for
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anharmonicity using first-order perturbation theory, and we arrive at the Morse

frequency, v.

3.4 Illustration of the Morse Method with Data

Using the water dimer (counterpoise optimized in a 6-311G** basis set with full CP
corrections for energies and frequencies) as an example for each mode, the step-size (in
the positive x and negative x directions) is determined as shown in Table 14. For mode
9, which is the O-H stretch vibration of the hydrogen in the hydrogen bond, x comes out
to be 0.09108149 A. The equilibrium energy, V.., which is the energy at the bottom of
the well, is -6.650154 x 10 ergs. V., the single-point energy at the n=0 turning point
stepping “forward” (in the positive x direction) is -6.649830 10 ergs. Likewise, V. is
the second turning point stepping “backward” (in the negative x direction) and has the
value -6.649692 10 ergs.

The energies at the turning points must be calculated relative to the baseline, the
energy minimum. V.. now becomes zero, and V, and V. now have positive energy

values.

Table 14. Displacement x and Single-Point Energy Values.

V. (ergs)

Mode | x Step | x (A) Ve (ergs) V. (ergs) [relative to V]

9 |Pos 0.091081]-6.650154 x 10°-6.649830 x 10" 3.239225x 107"

9 [Neg 0.091081-6.650154 x 10°-6.649692 x 10| 4.614672x 103
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AE, the change in energy at the turning points is the simple difference in energy

between the two single-point energies, V. and V. relative to the baseline (Table 15). The

equilibrium dissociation energy, D, , is calculated from

(3.30)

Table 15. Difference in Energy of the Turning Points (AE ), Harmonic Frequency
(v),andD, .

Mode AE (ergs) | v (Hz) D, (ergs)

9 1.375x 10" 1.160 x 10" 1.200 x 10"

Next, we calculate @ as shown in Table 16. a? is given by the relation ua@’® = 2Dea2 ,

where

2=/sz
2D

e

a

(3.31)

Recall, that @ is equal to 2zv.

Table 16. Anharmonicity Constant, 3. and Computed Values for o, and a.

Mode R(g o’ (cm'z) a (cm") ©e (cm'l) Ye

9 1.744 x 10%5.909 x 10%| 1.965 x 10% | 3.869 x 10* [1.602 x 107
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D

a
@, calculated by @, = —c E—f’;’— provides a good check of the parameters, as the result
/4

should be the harmonic frequency as calculated in Gaussian. The anharmonicity constant

hc

—
4D,

X.isgivenby y, =

e

Using first-order perturbation theory, as discussed before, we arrive at the following
values for b and E for mode nine (Table 17). The subscripts of 0 and 1 for b and E

E,-E,

, We arrive at
he

indicate the n=0 and n=1 energy levels, respectively. From v,, . =

the Morse frequency in wavenumbers.

Table 17. Calculated b and E Values and Arrival at the Morse Frequency.

Mode by (gz/s4ergs) E (ergs) b, (gZ/s4ergs) E, (ergs) | vMorse (cm™)

9 5962 x 10 [3.812x 10| -1.073x10* |1.125x 10" 3745

3.5 Results from Morse Illustration

From Table 18 below, it can be seen that the Morse frequency approximates the
experimental frequency fairly well for the upper nine of the twelve modes of the water
dimer. Modes 1-3 are too high (30%-33% above the experimental values) owing to the
fact that their energies at the turning points are quite high for low frequency modes,
having the same order of magnitude as those of the upper five frequencies. Modes 1 and

3 also appear to be high partly because the expression for D, approaches infinity when

AE approaches zero (the harmonic oscillator has an effective “ D, that approaches
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infinity, hence it’s lesser success in modeling a dissociation energy), and modes 1-3 are
rovibrational modes which are not well characterized by a potential with this
characteristic. The reasoning regarding D, approaching infinity also applies to modes
six and twelve, the error being 7%-8%. The low, soft modes are expected to exhibit
shallow, wide potentials. Therefore, the 6-311G** basis may need to be upgraded to

include diffuse functions.

Table 18. Comparison of Morse Frequencies with Experimental Values.

Experiment | Deviation from % Deviation
Mode v Morse (cm'l) (cm'l) Expt (cm") from

Experiment
1 115 88?2 27 30.19
2 143 103 ° 40 38.77
3 143 108 ® 35 32.84
4 149 143° 6 432
5 305 311° -6 -1.92
6 566 523 ¢ 43 8.21
7 1668 1599 © 69 431
8 1697 1616 © 81 498
9 3745 3601 ¢ 144 3.99
10 3815 3660 ¢ 155 425
11 3912 37359 177 4.73
12 4010 3745 ¢ 265 7.08

? Reference [18], planar supersonic molecular beam expansion (terahertz laser vibration-
rotation-tunneling spectroscopy), 5 K. ° Reference [19], planar supersonic molecular
beam expansion (terahertz laser vibration-rotation-tunneling spectroscopy), S K. °
Reference [20], Neon matrix, 10 K. 4 Reference [21], molecular beam depletion
spectroscopy with size selection by momentum transfer in scattering experiment (atoms
under single collision conditions).

A look at the values for D, (in eV’s) for all modes, as shown in Table 19, reveals the

extreme dissociation energies for Modes 1,3, 6, and 12 provided by the Morse potential,
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which contributes to the error in these bands (except for mode 2, whose D, seems

reasonable here despite significant error in the resulting Morse frequency).

Table 19. Computed D, Values for all Modes.

Mode D¢(eV)
1 206201.3
2 5.1
3 27060.3
4 0.2
5 4.7
6 14278750.3
7 35.8
8 37.2
9 7.5
10 10.5
11 12.6
12 560675805.0

3.6 The Morse Potential and Symmetric Potentials
When the two single-point energies for a given mode are exactly equivalent, this

suggests a symmetric MP2 potential. Recall the expression for D, in the Morse potential

(3.32)

When the single-point energies are equal, as must happen in this system for the motions
of symmetry species A”, AE equals zero. Such modes are better expressed in even
powers of the displacement for symmetry reasons, than by using the intrinsically
asymmetric Morse function to describe the potential. Never the less, it is possible to fit a

Morse potential for these modes.



45

Normally, the Morse method would be unable to predict a frequency in this case due
to division by zero. In this situation, we introduced an insignificant departure from
perfect equivalence; AE remains effectively unchanged (but nonzero), and the
calculation can proceed, and the results processed by Morse analysis. These frequency

predictions are based on Morse potentials with a high degree of symmetry. As D, of the

Morse potential becomes very large, the Morse curve is very nearly quadratic and
strongly resembles that of the harmonic potential (producing frequencies akin to the
harmonic bands). This can be seen from figures 5 and 6, which illustrate how the Morse

frequencies approach the harmonic frequencies in these cases.
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Figure 5. Harmonic (blue) and Morse (black) potentials overlayed with their respective
energy levels for HCI [38]. Note the distinctive form of the Morse potential with its
highest degree of asymmetry for large AE .
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Figure 6. Harmonic (blue) and Morse (black) potentials overlayed with their respective
energy levels for HCI [38]. Note the very symmetric Morse potential with only a 3 %
anharmonic factor similar to the case when single-point energy values are close in energy

(very small AFE).



CHAPTER V. The Polynomial Method

4.1 Basic Theory

In an attempt to provide an alternative method for calculating vibrational frequencies
and to improve upon the Morse method, while maintaining the same computational speed
advantage, a polynomial fitting technique was investigated. A three-term polynomial
potential may be thought of as an harmonic potential (first term) followed by two terms
that are perturbations of the harmonic potential. We have chosen to approximate the

vibrational potentials as follows, where V is the polynomial potential

Ax? Bx* Cx*
+ +
2 6 24

V=

4.1)

As before with x, the turning point is given by

x= \/—hg 4.2)

Stepping forward (in the positive x direction) along the potential, we have the single-
point energy, V,

3
g™}
Ahv k Ch*?
V. = + + >
2k 6 24k

4.3)

And stepping backward (in the negative x direction) gives the single-point energy V_

3
B(thE
L 2.2
v AV k) ohv (4.4)
2k 6 24k

To define the B coefficient, we subtract V, from V_. This leaves only the B term

47
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o)
AE -\ kK (4.5)

The values of all variables are known (except for the coefficient B). Here, v is the
harmonic frequency calculated in Gaussian, and k is the corresponding force constant.
AE, of course, is the difference in energy of the single-point energies. One may now
solve for B.

We may also eliminate the B term entirely by calculating the mean or average of the

two single-point energies, E

Ahv  Ch*?
E=——+ 3
2k 24k

(4.6)

By making the slight approximation that the coefficient A equals k, forcing the first term
to equal the harmonic potential, the only unknown variable is the coefficient C, and so C
may now be calculated.

A better representation of A in the polynomial than the harmonic force constant can be

found by using the force constant of a Morse potential

K

vorse = 2D,a% = A (4.7)
Now all coefficients of the polynomial are known.

It is necessary to employ second-order perturbation theory when arriving at
frequencies generated by a polynomial potential. First-order perturbation theory is not
adequate because the cubic term (B term) is annihilated, and it is this term that provides

significant reduction of energy of the harmonic frequency, bringing it closer to the

frequency observed experimentally.
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4.2 First and Second Order Perturbation Corrections

The polynomial method presented in this work makes use of perturbation theory to
correct vibrational frequencies to second order. In perturbation theory, for a vibrational
system whose energy and wavefunction are unknown, as given by the equation

Hy =FEy (4.8)
and for a reference vibrational system that has already been solved,
H, =EY, (4.9)

where n is the ground state, a perturbation of the reference system can be defined, and
the components of the system to be solved may be written in terms of the perturbed
reference system.

After manipulation, the first order correction of the vibrational energy is given by

B =y

V|y/},°>> (4.10)

where V is the potential operator.

The second order correction to the energy is calculated according to

) )

S o A

Vo' )=~ O
k#n Ek _En

EP =(p (4.11)

Here, the first order correction to the wave function, ", is given by

78041 7%
-2 %mﬁz}lwi")) (4.12)

k#n

M _

n
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Detailed derivations of first and second order perturbation corrections are presented in the

appendix.
4.3 Polynomial Method in Detail

4.3.1 Perturbing the Harmonic Oscillator
Here we present in detail the polynomial method developed in this work. We begin

with the Schroedinger equation for the quantum mechanical harmonic oscillator [39]

hZ d2 ka
( 2mdx’ 2 j‘/’ v ( )

2
where the quadratic potential operator, > is separable from the kinetic operator, m is

the effective mass, and £ is the force constant. The quadratic potential describes the
normal mode motions according to the harmonic model. The harmonic frequencies are
computed from the diagonalized mass-weighted Hessian (force constant) matrix

represented by

2
k, = v (4.14)
7 | dxdx,

The resulting eigenvectors are the normal mode motions of each atom, and the
eigenvalues provide the vibrational energies.

For the perturbed harmonic oscillator

—h? d* kx*
2m dx? 2

+ +,Bx3+7x4J‘I’=E‘P (4.15)
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We define the unit of energy as #@/2 and define the quantity £ to be (;—E-j and after
w

manipulation ultimately arrive at

[ —h d° + ko +(ijﬂx3 +(i)yx“j‘{‘ =&y (4.16)
haw

mo dx*>  ho hw

In equation (4.16) above, we simplify terms by gathering constants and the variable x into

a single variable q . More importantly we do this to put x in terms of the unitless length,

g , similar to the same g used by Fowler [40]. We find g to be

q= -”1h"—’x (4.17)

From equation (4.17) x must be

x=."q (4.18)

Substituting this expression wherever x appears eventually produces

3
2 = 2
9 el 2| j2q3+y 2 J[—h ] q* ¥ = v (4.19)
dq ho )\ mw ho )\ Mo

Our perturbation takes the form of a polynomial

Vig)= Bq3 + Cq4 (4.20)

This is the same form as in equation (4.19) above, where

B=p [i] [Lf 421)
ho )\ mw

and

C-= 7(ij (—h—j (4.22)
hw )\ mw
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The perturbed harmonic oscillator is now in terms of energy units of Aw/2

and in terms of q , the desired unitless length (unitless displacement along the normal

mode coordinate):

2
[d +q2+Bq3+Cq4}‘P=e“P (4.23)
q

2

A more detailed treatment is presented in the appendix.

4.3.2 q Matrices

Let our perturbation again be expressed in cubic and quartic terms

V(q)=Bq’ +Cq* (4.24)

Using our unit of energy, (hij , the energy states of the oscillator become ¢, =2n+1,

and the working integral is

<n|q|n+1>=[(n +1)/2T/2 (4.25)

Variable g, in the reference (unperturbed) system, then becomes the matrix of these
integrals.

The matrices for all powers of q are as follows:
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0 {—2 0 0 0 0 0 0 |
g 0 1 0 0 0 0 0
0 1 0 ﬁzﬁ 0 0 0 0
0 0 ﬁzﬁ 0 42 0 0 0
q- 0 0 0 V2 0 ﬁzﬁ 0 0
0 0 0 0 ﬁzﬁ 0 3 0
0 0 0 0 0 J3 0 ﬁzﬁ
0 0 0 0 0 0 ﬁzﬁ 0

For g° we have the matrix below. Notice that the diagonal elements are

is the fraction of energy in units of h7a) in each state. The pattern fails for the 8,8

element. This presents no error in our calculations though as we are only interested in the
ground state (n=0) mixing with states k=1-4 and the first excited state (n=1) mixing with

states k=2-5. So the 8,8 element is never needed.
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- 7 g
5 0 50 0 0 0 0
D
0o 2 ﬁjﬁ 0 0 0 0
{2 5
o0 3 0 J3 0 0 0
(342 7
q2—=0 S50 3 0 J5 0 0
0 0 /3 0 g 0 E@—ﬁ— 0
o o0 0o 5 0 12—1 0 —ﬁgﬁ
o 0 0 0 ——ﬁgﬁ 0 ];— 0

The values from the g° and g* matrices may be used in approximating first and second
order perturbations. Diagonal elements are used for calculating first order effects and

off-diagonal elements are used i<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>